Eulerian Tours

By Shaylan Lalloo

What is an Eulerian Tour?

* A path that uses every edge exactly once is
called an eularian tour. Furthermore, a path
that starts and ends at the same vertex and is
an eularian tour but is called an eulerian
circuit.

When does there exist an eulerian
tour?

* An eulerian tour exists when the degree of all
vertices except for exactly 2 are even and the
graph is connected

* An eularian circuit exists when the degree of
all the vertices are even and the graph is
connected

Proof

* This can be seen from the fact that every time
you enter a vertex in a path, you must be able
to leave it unless you are at the beginning or
end of the path so this adds 2 to the degree of

the vertices on the path not being the starting
or ending vertex.

Algorithm for finding eulerian tours

* Find the starting node. Then recurse using the
following rule

— If a node has no neighbours, push it onto the
answer vector

— If a node has a neighbour, throw the neighbours
onto a stack and process them

— Processing a node consists of deleting the edge
between the current node and neighbour, then
recursing on the neighbour. Once that is done,
pushing the current node onto the answer vector

Code(Variables)

vector<int> mygraph[10];
Int n;

vector<int> mystack;
vector<int> myans;

Int curpos = 0;

Reading Inputs

ifstream fin ("myin.txt");

fin >> n;

for (inti=0;i<n; ++i){
int f t;
fin>>f>>t;
mygraph[f - 1].push_back(t - 1);
mygraph[t - 1].push_back(f - 1);
}
for (inti=0;i<7; ++i){
sort(mygraphli].begin(), mygraphli].end(), cmp);
}

Recursion algorithm but using stack

mystack.push_back(0);
while (!mystack.empty()){
curpos = mystack.back();
if (mygraph[curpos].size() == 0){
myans.push_back(curpos);
mystack.pop_back();
}
else {
int neigh = mygraph[curpos].back();
mystack.push_back(neigh);
mygraph[curpos].pop_back();
for (inti=0; i< mygraph[neigh].size(); ++i){
if (mygraph[neigh][i] == curpos){
mygraph[neigh].erase(mygraph[neigh].begin() + i);
break;
}
}
}
}

Outputting result

cout << "MYANS: ":
for (inti=0; i< myans.size(); ++i){

cout << myans|i] + 1 <<

J

cout << endl;

Pseudocode

circuit is a global array
find_euler_circuit
circuitpos =0
find_circuit(node 1)

nextnode and visited is a local array
the path will be found in reverse order
find_circuit(node i)

if node i has no neighbors then
circuit(circuitpos) = node i
circuitpos = circuitpos + 1
else
while (node i has neighbors)
pick a random neighbor node j of node i
delete_edges (node j, node i)
find_circuit (node j)
circuit(circuitpos) = node i
circuitpos = circuitpos + 1

Visual representation of algorithm

Stack:
Location: 1
Circuit;

Stack: 1
Location: 4
Circuit;

Stack: 14
Location: 2
Circuit;

I~3

Stack:14 2
Location: 5
Circuit;

I~3

Stack: 1425
Location: 1
Circuit;

Stack:14 2

Location: 5
Circuit: 1

I~3

Stack: 1425

Location: 6
Circuit: 1

I~

Stack: 14256

Location: 2
Circuit: 1

Stack: 142562

Location: 7/
Circuit: 1

4

Stack: 1425627

Location: 3
Circuit: 1

I~3

Stack: 14256273

Location: 4
Circuit: 1

Stack: 142562734

Location: 6
Circuit: 1

Stack:1425627346

Location: 7/
Circuit: 1

Stack: 14256273467

Location: 5
Circuit: 1

Stack:

Location:
Circuit: 1576437265241

Problem involving Eulerian Tour

USACO Riding Fences

Farmer John owns a large number of fences that must be repaired annually. He
traverses the fences by riding a horse along each and every one of them (and
nowhere else) and fixing the broken parts.

Farmer John is as lazy as the next farmer and hates to ride the same fence twice.
Your program must read in a description of a network of fences and tell Farmer
John a path to traverse each fence length exactly once, if possible. Farmer J can, if
he wishes, start and finish at any fence intersection.

Every fence connects two fence intersections, which are numbered inclusively
from 1 through 500 (though some farms have far fewer than 500 intersections).
Any number of fences (>=1) can meet at a fence intersection. It is always possible
to ride from any fence to any other fence (i.e., all fences are "connected").

Your program must output the path of intersections that, if interpreted as a base
500 number, would have the smallest magnitude.

There will always be at least one solution for each set of input data supplied to
your program for testing.

